

Date Planned ://	Daily Tutorial Sheet-4	Expected Duration : 90 Min	
Actual Date of Attempt : / /	JEE Advanced (Archive)	Exact Duration :	

- 46. For the reaction, $\left[\text{Ag(CN)}_2 \right]^- \rightleftharpoons \text{Ag}^+ + 2\text{CN}^-$. The equilibrium constant, at 25°C , is 4.0×10^{-19} . Calculate the silver ion concentration in a solution which was originally 0.10 M in KCN and 0.03 M in AgNO₃.
- 47. The average concentration of SO_2 in the atmosphere over a city on a certain day is 10 ppm, when the average temperature is 298 K. Given that the solubility of SO_2 in water at 298 K is 1.3653 mol/L and pK_a of H_2SO_3 is 1.92, estimate the pH of rain on that day. (2000)
- **48.** For a sparingly soluble salt A_pB_q, the relationship of its solubility product (L_s) with its solubility (S) is:
 - (A) $L_s = S^{p+q} \cdot p^p \cdot q^q$

(B) $L_s = S^{p+q} \cdot p^q \cdot q^p$

(2001)

(2002)

(C) $L_s = S^{pq} \cdot p^p \cdot q^q$

- (D) $L_s = S^{pq} \cdot (p \cdot q)^{(p+q)}$
- **49.** Identify the correct order of solubility of Na₂S, CuS and ZnS is aqueous medium.
 - (A) CuS > ZnS > Na₂S

(B) $ZnS > Na_2S > CuS$

(C) $Na_2S > CuS > ZnS$

- (D) $Na_2S > ZnS > CuS$
- A solution which is 10^{-3} M each in Mn^{2+} , Fe^{2+} , Zn^{2+} and Hg^{2+} is treated with 10^{-16} M sulphide ion. If K_{sp} of MnS, FeS, ZnS and HgS are 10^{-15} , 10^{-23} , 10^{-20} and 10^{-54} respectively, which one will precipitate first? (2003)
 - (A) FeS
- (B) MgS
- (C) HgS
- (D) ZnS
- **51.** 0.1 M of HA is titrated with 0.1 M NaOH, calculate the pH at end point. Given $K_a(HA) = 5 \times 10^{-6}$ and $\alpha << 1$
- **52.** HX is a weak acid $(K_a = 10^{-5})$. It forms a salt NaX (0.1M) on reacting with caustic soda. The degree of hydrolysis of NaX is: (2004)
 - **(A)** 0.01%
- **(B)** 0.0001%
- **(C)** 0.19
- **(D)** 0.5%
- 53. $CH_3NH_2(0.1 \text{ mole}, K_b = 5 \times 10^{-4})$ is added to 0.08 mole of HCl and the solution is diluted to one litre, resulting hydrogen ion concentration is: (2005)
 - (A) 1.6×10^{-11}
- **(B)** 8×10^{-11}
- (C) 5×10^{-5}
- **(D)** $8 \times 10^{-}$
- **(**
- Solubility product (K_{sp}) of salts of types MX, MX_2 and M_3X at temperature T are 4.0×10^{-8} , 3.0×10^{-14} and 2.7×10^{-15} , respectively. Solubilities (mol dm⁻³) of the salts at temperature T are in the order (2008)
 - (A) $MX > MX_2 > M_3X$
- **(B)** $M_3X > MX_2 > MX$
- (C) $MX_2 > M_3X < MX$
- **(D)** $MX > M_3X > MX_2$
- **55.** The dissociation constant of a substituted benzoic acid at 25° C is 1.0×10^{-4} . The pH of 0.01 M solution of its sodium salt is: (2009)

Amongst the following, the total number of compounds whose aqueous solution turns red litmus paper **56**.

blue is: KCN

*57

NaCl

Zn(NO₃)₂

FeCl₃

lacksquare

(2010)

 K_2CO_3

 K_2SO_4 NH_4NO_3

LiCN

 $(NH_4)_2C_2O_4$

Aqueous solutions of HNO3 KOH, CH3COOH and CH3COONa of identical concentrations are provided.

The pair(s) of solutions which form a buffer upon mixing is:

(2010)

HNO3 and CH3COOH (A)

KOH and CH3COONa **(B)**

(C) HNO3 and CH3COONa (D) CH3COOH and CH3COONa

58. The total number of diprotic acids among the following is: (2010)

 H_3PO_4

 H_2SO_4

 H_3PO_3

 H_2CO_3 $H_2S_2O_7$ H_3PO_2 H_2CrO_4 H₃BO₃ H_2SO_3

In 1 L saturated solution of AgCl $[K_{sp}(AgCl) = 1.6 \times 10^{-10}]$, 0.1 mole of CuCl $[K_{sp}(CuCl) = 1.0 \times 10^{-6}]$ is **59**. added. The resultant concentration of Ag⁺ in the solution is 1.6×10^{-x} . The value of 'x' is

60. (A) Find the solubility product of a saturated solution of Ag₂CrO₄ in water at 298 K if the emf of the cell Ag | Ag+ (saturated. Ag₂CrO₄ solution) | | Ag+ (0.1 M) | Ag is 0.164 V at 298 K.

(B) What will be the resultant pH when 200 mL of an aqueous solution of HCl (pH = 2.0) is mixed with 300 mL of an aqueous of NaOH (pH = 12.0)?

The K_{sp} of Ag_2CrO_4 is 1.1×10^{-12} at 298K. The solubility (in mol/L) of Ag_2CrO_4 in a 0.1 M AgNO₃ solution 61. is: (2013)

 1.1×10^{-11} (A)

 1.1×10^{-10}

(C) 1.1×10^{-12}

(D) 1.1×10^{-9}

Paragraph for Question No. 62 - 63

When 100 mL of 1.0 M HCl was mixed with 100 mL of 1.0 M NaOH in an insulated beaker at constant pressure, a temperature increase of 5.7°C was measured for the beaker and its contents (Expt.1). Because the enthalpy of neutralization of a strong acid with a strong base is a constant $(-57.0 \text{kJ mol}^{-1})$, this experiment could

In a second experiment (Expt. 2) 100 mL of 2.0 M acetic acid ($K_a = 2.0 \times 10^{-5}$) was mixed with 100 mL of 1.0 M NaOH (under identical conditions to Expt.1) where a temperature rise of 5.6°C was measured. (Consider heat capacity of all solutions as $4.2 \text{Jg}^{-1} \text{ K}^{-1}$ and density of all solutions as 1.0 g mL^{-1})

Enthalpy of dissociation (in kJ mol⁻¹) of acetic acid obtained from the Expt. 2 is **62**. (2015)

(A) 1.0

10.0 (B)

(C) 24.5 (D) 51.4

63. The pH of the solution after Expt.2 is

be used to measure the calorimeter constant.

(2015)

(A) 2.8 (B) 4.7 (C) 5.0 (D) 7.0

The solubility of a salt of weak acid (**AB**) at pH 3 is $Y \times 10^{-3}$ mol L⁻¹. The value of Y is 64. (Given that the value of solubility product of $AB(K_{sp}) = 2 \times 10^{-10}$ and the value of ionization constant of **HB** $(K_2) = 1 \times 10^{-8}$ (2016)

Dilution processes of different aqueous solutions, with water, are given in LIST-I. The effects of dilution of the solutions on [H⁺] are given in LIST-II.(2018)

(Note: Degree of dissociation (α) of weak acid and weak base is << 1; degree of hydrolysis of salt <<1; [H⁺] represents the concentration of H⁺ ions)

LIST-I		LIST-II	
(P)	(10 mL of 0.1 M NaOH + 20 mL of 0.1 M acetic acid) diluted to 60 mL	1.	the value of [H ⁺] does not change on
	accure acidy undited to 60 III.		dilution
(Q)	(20 mL of 0.1 M NaOH + 20 mL of 0.1 M	2.	the value of [H ⁺] changes to half of its
(9)	acetic acid) diluted to 80 mL	2.	initial value on dilution
(B)	(20 mL of 0.1 M HCl + 20 mL of 0.1 M		the value of [H ⁺] changes to two times of its
(R)	ammonia solution) diluted to 80 mL	3.	initial value on dilution
	10 mL saturated solution of $Ni(OH)_2$ in		the value of [H ⁺] changes to $\frac{1}{\sqrt{2}}$ times of
(S)	equilibrium with excess solid $Ni(OH)_2$ is	4.	its initial value on dilution
	diluted to 20 mL (solid $Ni(OH)_2$ is still		
	present after dilution).		
		5.	the value of $[H^+]$ changes to $\sqrt{2}$ times of its
			initial value on dilution

Match each process given in LIST-I with one or more effect(s) in LIST-II. The correct option is:

- **(A)** $P \to 4, Q \to 2; R \to 3; S \to 1$
- **(B)** $P \to 4, Q \to 3; R \to 2; S \to 3$
- (C) $P \to 1, Q \to 4; R \to 5; S \to 3$
- **(D)** $P \to 1, Q \to 5; R \to 4; S \to 1$